Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Prep Biochem Biotechnol ; : 1-13, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37610377

ABSTRACT

For the first time in this study, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were green synthesized by the cost-effective and eco-friendly procedure using Cotton seed meal and Fodder yeast extracts. The biosynthesized NPs were characterized by UV-Vis spectroscopy, dynamic light scattering analysis (DLS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and fourier-transform infrared (FTIR) spectroscopy. Furthermore, the biosynthesized NPs were tested in vitro against biofilm formation by some pathogenic negative bacteria (Escherichia coli, Proteus mirabilis, Klebsiella sp., Salmonella sp., and Pseudomonas aeruginosa) and negative bacteria (staphylococcus aureus) as well as against human denovirus serotype 5 (HAdV-5) and anticancer activity using HepG2 hepatocarcinoma cells. UV-Vis absorption spectra of reaction mixture of AgNPs and AuNPs exhibited maximum absorbance at 440 nm and 540 nm, respectively. This finding was confirmed by DLS measurements that the highest intensity of the AgNPs and AuNPs were 84 nm and 73.9 nm, respectively. FTIR measurements identified some functional groups detected in Cotton seed meal and Fodder yeast extracts that could be responsible for reduction of silver and gold ions to metallic silver and gold. The morphologies and particle size of AgNPs and AuNPs were confirmed by the TEM and SAED pattern analysis. Biosynthesized AgNPs and AuNPs showed good inhibitory effects against biofilms produced by Escherichia coli, Proteus mirabilis, Klebsiella sp., Salmonella sp., Pseudomonas aeruginosa, and Staphylococcus aureus. In addition, they showed anticancer activities against hepatocellular carcinoma (HepG-2) and antiviral activity against human adenovirus serotype 5 infection in vitro. Finally, the results of this study is expected to be extremely helpful to nano-biotechnology, pharmaceutical, and food packing applications through developing antimicrobial and/or an anticancer drugs from ecofriendly and inexpensive nanoparticles with multi-potentiality.

2.
J Water Health ; 20(8): 1212-1222, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36044190

ABSTRACT

The new coronavirus (SARS-CoV-2) is a respiratory virus causing coronavirus disease (COVID-19). Individuals with COVID-19 can shed the viral genome in their feces, even if they do not have symptoms, and the virus can be detected in wastewater. The current study provides the first surveillance of SARS-CoV-2 RNA genome in the wastewater in Egypt. To study this aim, untreated influent (n = 48) and treated effluent (n = 48) samples were collected between January and December 2021 from the wastewater treatment plant in Giza. The viral RNA genome was determined by reverse transcription-polymerase chain reaction (RT-PCR) (S, E, and N target regions) and real-time quantitative reverse transcription-PCR (RT-qPCR) (N1 and N2 target regions). The RT-PCR assay failed to detect SARS-CoV-2 RNA in all samples analyzed, whereas RT-qPCR succeeded in the detection of N gene of SARS-CoV-2 in 62.5% of untreated influent samples. The RT-qPCR Ct values of those samples tested positive ranged from 19.9 to 30.1 with a mean of 23. The treated effluent samples were negative for viral RNA detected by both RT-PCR and RT-qPCR, indicating the efficiency of the sewage treatment plant in degrading SARS-CoV-2. Our preliminary findings provide evidence for the value of wastewater epidemiology approach for the surveillance of SARS-CoV-2 in the population to assist in the responses of public health to COVID-19 outbreak.


Subject(s)
COVID-19 , SARS-CoV-2 , Egypt/epidemiology , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Wastewater
3.
Food Environ Virol ; 14(2): 178-189, 2022 06.
Article in English | MEDLINE | ID: mdl-35246828

ABSTRACT

There is an upward trend of consumption of organic fresh vegetables due to consumer demand for healthy foods without chemical additives. On the other hand, the number of food borne outbreaks associated with contaminated fresh produce has raised, being human norovirus genogroup I (GI), GII and hepatitis A virus (HAV) the most commonly reported causative agents. This study aimed to detect the presence of these viruses in green leafy vegetables (watercress, leek, coriander, and parsley) and strawberry using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Samples were collected from the Egyptian regions of Kalubia, Giza, and Mansoura. Overall HAV average occurrence in fresh strawberry was 48% with a mean concentration of 6.1 × 103 GC/g; Also NoV GI overall average occurrence was 25% with a mean concentration of 9.7 × 102 genome copies (GC)/g, while NoV GII was 40% with a mean concentration of 2.4 × 103 GC/g. For strawberry collected directly from Kalubia farms, neither HAV nor HNoV GI & GII were detected. In green leafy vegetable samples, the occurrence of HAV was 31.2% with a mean concentration of 9.2 × 104 GC/g, while occurrence of NoV GI and NoV GII were 20% and 30% with a mean concentrations of 1.1 × 104 and 2.03 × 103 GC/g, respectively. In conclusion, the importance of a virus surveillance program for soft fruits and fresh vegetables is highlighted by the outcomes of this study. Our findings should help with the management and control of microbial concerns in fresh foods, reducing the danger of consuming contaminated foods.


Subject(s)
Fragaria , Hepatitis A virus , Norovirus , Viruses , Egypt , Hepatitis A virus/genetics , Humans , Norovirus/genetics , Vegetables
4.
Environ Sci Pollut Res Int ; 29(19): 28139-28148, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34988812

ABSTRACT

Surface water used as an irrigation source can be a significant source of viral contamination of fresh produce. Enteric viruses such as hepatitis A virus (HAV) and human norovirus genogroup I (HNoV GI) and genogroup II (HNoV GII) can be transmitted to human via fresh produce when irrigated with contaminated water or when prepared by infected food handlers. In the current study, we investigated the presence of HAV, HNoV GI and GII in fresh produce and surface water used in cultivation of this produce using real-time PCR. Samples were collected from six different points in the Mansoura and Giza regions, Egypt. Our analysis showed that at least one virus was found in 41.6% (30/72) of surface water samples and 27% (13/48) of fresh produce samples. HAV (23/72) with a mean viral concentration = 4 × 106 genome copies/litre (GC/L) was the most frequently identified virus in surface water samples, followed by human norovirus genogroup II (HNoV GII) (15/72, with a mean concentration = 1.2 × 106 GC/L, and human noroviruses genogroup I (HNoV GI) (12/72, with a mean concentration = 1.4 × 104 GC/L). Additionally, HAV (10/48) with a mean concentration = 5.2 × 105 genome copies/gram (GC/g) was also the most frequently detected virus in the fresh produce samples, followed by HNoV GII (8/48, with a mean concentration = 1.7 × 104 GC/g); meanwhile, HNoV GI (6/48) was less detected virus with a mean concentration = 3 × 103 GC/g. This work suggests a wide prevalence of human enteric viruses in surface waters and fresh produce, which is of concern when the fresh produce is eaten raw. Thus, additional monitoring for viral pathogens in irrigation water and food is needed to increase the awareness of this issue to rise the control measures to reduce illness from contaminated food.


Subject(s)
Enterovirus , Hepatitis A virus , Norovirus , Viruses , Egypt , Enterovirus/genetics , Hepatitis A virus/genetics , Humans , Norovirus/genetics , Reverse Transcriptase Polymerase Chain Reaction , Viruses/genetics , Water
5.
Front Microbiol ; 12: 793135, 2021.
Article in English | MEDLINE | ID: mdl-34917066

ABSTRACT

Bacteriophages are bacterial-specific viruses and the most abundant biological form on Earth. Each bacterial species possesses one or multiple bacteriophages and the specificity of infection makes them a promising alternative for bacterial control and environmental safety, as a biotechnological tool against pathogenic bacteria, including those resistant to antibiotics. This application can be either directly into foods and food-related environments as biocontrol agents of biofilm formation. In addition, bacteriophages are used for microbial source-tracking and as fecal indicators. The present review will focus on the uses of bacteriophages like bacterial control tools, environmental safety indicators as well as on their contribution to bacterial control in human, animal, and environmental health.

6.
Prep Biochem Biotechnol ; 51(9): 926-935, 2021.
Article in English | MEDLINE | ID: mdl-33529084

ABSTRACT

Silver nanoparticles (AgNPs) were synthesized using extracellular filtrates of some Lysinibacillus sphaericus (Ls) strains under simple conditions. Ls synthesized AgNPs showed the optical absorption peaks at 388-412 nm as detected by UV-visible spectrophotometer. Transmission electron micrographs of bacterial synthesized AgNPs revealed that they were polycrystalline with spherical, hexagonal, cuboidal, rod and irregular shapes. The average diameter of the tested AgNPs were ranged from 14-21 nm and they were negatively charged as detected by DLS (-18.2 to -28.9). FTIR spectra showed the presence of nitrogenous biomolecules capping the synthesized AgNPs. The filtrates of tested Ls strains showed nitrate reductase activity (1.45-2.56 µmol/ml/min). Tested AgNPs showed bactericidal activity against Gram positive and Gram negative bacteria, fungicidal activity against yeast and filamentous fungi, and virucidal activity against rotavirus. In addition, it showed synergistic antimicrobial effect to cephradine and nizoarm against all tested microorganisms. Cytotoxicity test revealed the safety of the tested nanoparticles at tested concentrations.Finally, Ls strains represent microbial sources for ecofriendly, simple and economic biosynthesis of antimicrobial AgNPs. Also, this research may contribute to the medicinal chemistry and pharmaceutical industry for the development of new products used for the public health.


Subject(s)
Anti-Infective Agents , Bacillaceae/chemistry , Metal Nanoparticles/chemistry , Silver , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Silver/chemistry , Silver/pharmacology
7.
Food Environ Virol ; 12(3): 218-225, 2020 09.
Article in English | MEDLINE | ID: mdl-32388732

ABSTRACT

Environmental monitoring is critical in a developing country like Egypt where there is an insufficient framework for recording and tracking outbreaks. In this study, the prevalence of human adenovirus (HAdV), rotavirus group A (RVA) was determined in urban sewage, activated sludge, drainage water, drainage sediment, Nile water, and Nile sediment, using quantitative polymerase chain reaction (qPCR) analysis. HAdV was detected in 50% of urban sewage with viral concentrations ranging from 103 to 107 genome copies/liter (GC/L), 33% of activated sludge with viral concentrations ranging from 103 to 107 GC/kilogram (GC/kg), 95% of drainage water with viral concentrations ranging from 103 to 107 GC/L, 75% of drainage sediment with viral concentrations ranging from 103 to 107 GC/L, 50% of Nile water with viral concentrations ranging from 103 to 107 GC/L, and 45% of Nile sediment with viral concentrations ranging from 103 to 107 GC/kg. RVA was detected in 50% of urban sewage with viral concentrations ranging from 103 to 107 GC/L, 75% of activated sludge with viral concentrations ranging from 103 to 107 GC/L, 58% of drainage water with viral concentrations ranging from 103 to 107 GC/L, 50% of drainage sediment with viral concentrations ranging from 103 to 107 GC/L, and 45% of Nile water with viral concentrations ranging from 103 to 107 GC/kg. In conclusion, Abu-Rawash WWTP acts as a source of HAdV and RVA, releasing them into El-Rahawy drain then to the River Nile Rosetta branch.


Subject(s)
Adenoviruses, Human/isolation & purification , Rivers/virology , Rotavirus/isolation & purification , Wastewater/virology , Adenoviruses, Human/classification , Adenoviruses, Human/genetics , Adenoviruses, Human/growth & development , Egypt , Geologic Sediments/virology , Humans , Rotavirus/classification , Rotavirus/genetics , Rotavirus/growth & development
8.
J Water Health ; 18(1): 30-37, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32129184

ABSTRACT

Wastewater plays a major role in water pollution causing transmission of several viral pathogens, including Aichi virus (AiV) and human bocavirus (HBoV), associated with gastrointestinal illness in humans. In this study, we investigated the presence of AiV and HBoV in aquatic, sludge, sediment matrices collected from Abu-Rawash wastewater treatment plant (WWTP), El-Rahawy drain, Rosetta branch of the River Nile in Egypt by conventional polymerase chain reaction (PCR). AiV RNA was detected in 16.6% (2/12), 8.3% (1/12), 8.3% (1/12), 22% (16/72), 12.5% (3/24), 4% (1/24), and 0/24 (0%) of untreated raw sewage, treated sewage, sewage sludge, drainage water, drain sediment, river water, and river sediment, respectively. On the other hand, HBoV DNA was detected in 41.6% (5/12), 25% (3/12), 16.6% (2/12), 48.6% (35/72), 29% (7/24), 3/24 (12.5%), 4% (1/24) of untreated raw sewage, treated raw sewage, sewage sludge, drainage water, drain sediment, river water, and river sediment, respectively. This study provides data on the presence of these viruses in various types of water samples that are valuable to environmental risk assessment. In addition, the current study demonstrates the importance of environmental monitoring as an additional tool to investigate the epidemiology of AiV and HBoV circulating in a given community.


Subject(s)
Environmental Monitoring , Human bocavirus , Kobuvirus , Rivers/virology , Waste Disposal, Fluid , Wastewater/virology , Egypt , Humans , Sewage
9.
Arch Microbiol ; 202(1): 63-75, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31485713

ABSTRACT

Silver nanoparticles (AgNPs) were synthesized using cell-free filtrates of some mosquitocidal Bacilli. They showed the optical absorption peaks at 386-412 nm. They were polycrystalline spherical, hexagonal, cuboidal, rod and anisotropic shapes as detected by TEM. These nanoparticles were negatively charged with sizes ranging from 15 to 21 nm average diameter as detected by DLS. FTIR spectra showed that the main absorption bands of biomolecules capping AgNPs appeared at average wave numbers of 3435 cm-1 [ν(N-H) of amide A overlapped by ν(O-H)], 1631 cm-1 [(ν(C=O) of amide I], 1396 cm-1 [ν(C-N) of amide I], 2929 cm-1 (aliphatic C-H) and 1040 cm-1 (C-C-O). FTIR spectra confirmed the presence of protein biomolecules in the bacterial filtrate-formed coat covering AgNPs through free amide groups resulting in their stabilization in the aqueous medium. Nitrate reductase activity was found in all tested bacterial filtrates and ranged from 1.66 to 2.51 µmol/ml/min. These findings point to the probable role of nitrate reductase in reducing silver ions to silver nanoparticles and their stabilization. Tested AgNPs were multi-bioactive nanometals and showed mosquitocidal, bactericidal, fungicidal and virucidal activities. In addition, they exhibited highly synergistic mosquitocidal effect to spore toxin complex of mosquitocidal Bacilli at a very low concentration. AgNPs exhibited activities that were not or slightly cytotoxic to MA 104 cell line at tested concentrations. Therefore, they can be applied in the medical field. Finally, this study offered a simple, highly efficient, eco-friendly, economic method for biosynthesis of multi-bioactive AgNPs by some mosquitocidal Bacilli.


Subject(s)
Bacillus/physiology , Metal Nanoparticles/chemistry , Silver/chemistry , Silver/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Bacillus/enzymology , Bacillus/metabolism , Cell Line , Chlorocebus aethiops , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Nitrate Reductase/metabolism , Spectroscopy, Fourier Transform Infrared
10.
Environ Sci Pollut Res Int ; 26(21): 21619-21628, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31129895

ABSTRACT

Fresh produce irrigated with surface water that may contain pathogens such as enteric viruses can lead to outbreaks of foodborne viral illnesses. In the current study, we performed real-time PCR (qPCR) to monitor the presence of enteric viruses such as human adenoviruses (HAdVs), hepatitis A virus (HAV), rotavirus group A (RVA), and norovirus GI (NoV GI) in surface water and fresh produce that were grown using this surface water in Egypt. Samples were collected on four occasions from different sites located in the Delta and in Greater Cairo, Egypt. Of the 32 water samples and 128 fresh produce samples, 27/32 (84.3%) and 99/128 (77.3%), respectively, were positive for at least one virus. HAdV (30/32) with a mean viral load = 1.5 × 107 genome copies/L (GC/L) was the most commonly detected virus in water, followed by RVA (16/32, with a mean viral load = 2.7 × 105 GC/L), HAV (11/32, with a mean viral load = 1.2 × 104 GC /L), and NoV GI (10/32, with a mean viral load = 3.5 × 103 GC/L). Additionally, HAdV (71/128, with a mean viral load = 9.8 × 105 GC/g) was also the most commonly detected virus in the fresh produce, followed by NoV GI (43/128, with a mean viral load = 4.5 × 103 GC/g), HAV (33/128, with a mean viral load = 6.4 × 103 GC/g), and RVA (25/128, with a mean viral load = 1.5 × 104 GC/g). Our results indicate that fresh produce may be contaminated with a wide range of enteric viruses, and these viruses may originate from virus-contaminated irrigation water. Moreover, this fresh produce may serve as a potential vector for the transmission of viral foodborne illnesses. These findings are important for future risk assessment analysis related to water/foodborne viruses. Graphical abstract . Please provide caption for Graphical AbstractGraphical abstract showing sample collection and processing.


Subject(s)
Adenoviruses, Human/genetics , Agricultural Irrigation , Enterovirus/genetics , Environmental Monitoring , Fresh Water/virology , Water Pollution , Disease Outbreaks , Egypt , Hepatitis A virus , Humans , Norovirus , Real-Time Polymerase Chain Reaction , Rotavirus/genetics , Viral Load , Water
11.
J Water Health ; 17(2): 287-294, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30942778

ABSTRACT

Incidence of enteric viruses in sewage, the efficacy of wastewater treatment plants to remove these viruses, and health effects from their release into the surface water are very important environmental issues in the microbiology field. One of the most pathogenic enteric viruses is adenovirus which can cause a serious disease such as gastroenteritis with low grade fever and mild dehydration in humans. In this study we performed qualitative polymerase chain reaction (PCR) analysis of HAdV on 60 stool samples from children with acute gastroenteritis admitted to Abu-Rish hospital and 96 environmental samples (32 raw sewage, 32 treated sewage, 32 sewage sludge) collected from Zenin wastewater treatment plant (WWTP). HAdV were detected in 17 (28.3%) of stool, 27 (84.4%) of raw sewage, 16 (50%) of treated sewage and 25 (78%) of sludge samples. The viral concentrations were in the range of 2.02 × 106-7.23 × 106, 8.7 × 105-4.3 × 106, 1.22 × 104-3.7 × 106 and 1.48 × 106-1.77 × 107 GC/mL in stool, raw sewage, treated sewage, and sludge, respectively. HAdV was detected throughout the whole year of sample collection. Moreover, our results suggested that males were more susceptible to adenovirus infections than females. The results indicate that the high incidence of HAdV in the treated sewage may cause adverse health effects.


Subject(s)
Adenoviruses, Human , Environmental Monitoring/methods , Gastroenteritis/epidemiology , Wastewater/virology , Child , Egypt/epidemiology , Female , Gastroenteritis/virology , Humans , Male , Sewage
12.
Eur J Med Chem ; 168: 447-460, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30844608

ABSTRACT

A new series of 4-phenylcoumarin derivatives was synthesized starting from (2-oxo-4-phenyl-2H-chromen-7-yloxy) acetic acid hydrazide 3. Evaluation of the target compounds for their antiviral activity against hepatitis A virus revealed that the ethylthiosemicarbazide derivative 7b was the most potent virucidal agent (IC50 = 3.1 µg/ml, TI = 83). The Schiff's bases 14c and 14b demonstrated the highest virustatic effects against viral adsorption and replication, respectively (14c; IC50 = 8.5 µg/ml, TI = 88 and 14b; IC50 = 10.7 µg/ml, TI = 91). Furthermore, compounds 7b, 14b and 14c were tested against HAV 3C protease and showed significant inhibition effects (Ki = 1.903, 0.104 and 0.217 µM, respectively). The remarkable inhibitory effect expressed by the three target compounds against HAV 3C protease prompted us to expand our research on HRV 3C protease, a structurally related enzyme of the same family, and interestingly, the three target compounds displayed significant inhibitory effect against HRV 3C protease (IC50 = 16.10, 4.13 and 6.30 µM, respectively). Moreover, the active compounds 7b, 14b and 14c were docked within the pocket site of HAV 3C protease (PDB code: 2HAL) illustrating a strong H-profile with the key amino acids Gly170 and Cys172 similar to the co-crystallized ligand. Furthermore, 3D-pharmacophore and quantitative structure activity relationship (QSAR) models were generated to explore the structural requirements for the observed antiviral activity.


Subject(s)
Antiviral Agents/pharmacology , Coumarins/pharmacology , Drug Design , Hepatitis A virus/drug effects , Protease Inhibitors/pharmacology , Viral Proteins/antagonists & inhibitors , 3C Viral Proteases , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Coumarins/chemical synthesis , Coumarins/chemistry , Cysteine Endopeptidases/metabolism , Dose-Response Relationship, Drug , Hepatitis A virus/metabolism , Humans , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Quantitative Structure-Activity Relationship , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...